Not known Factual Statements About تقنية التعلم العميق



يستطيع تطبيق التعلم العميق أن يحلل كميات كبيرة من البيانات بشكل أكثر عمقًا وأن يكشف عن رؤىً جديدة ربما لم يتم تدريبه عليها. على سبيل المثال، فلنفترض أن هناك نموذج تعلم عميق يتم تدريبه على تحليل مشتريات المستهلكين.

كتاب معجم مصطلحات التعلم الآلي والتعلم العميق وعلم البيانات

طبقة المُخرجات في شبكة التعلم العميق هي الطبقة النهائيّة التي تنتج مُخرجات الشبكة أو تنبؤاتها بناءً على بيانات الإدخال التي تم معالجتها.

على سبيل المثال، سوف تنظر إلى شكل عينيه وأذنيه، وحجمه، وعدد الأرجل، ونوع الفراء. قد تحاول تحديد الأنماط، مثل ما يلي:

نقل التعلم كتب نقل التعلم نقل التعلم في الرؤية الحاسوبية

خوارزميات التعلم العميق هي خوارزميات كثيفة الحوسبة وتتطلب بنيةً أساسيةً ذات قدرة حوسبة كافية لتعمل بشكل صحيح. وإلا، فستستغرق وقتًا طويلاً لمعالجة النتائج. 

قد يكون من الصعب تفسير النتائج بشكل صحيح وإزالة عدم اليقين بدون مساعدة الخبراء.          

بعيدًا عن المُصطلحات المُعقّدة، تُحاول هذه الشبكات العصبيّة مُحاكاة سلوك الدماغ البشري - وإن كانت بعيدة كل البعد عن قدراته - مما يسمح لها "بالتعلم" من كميّات كبيرة من البيانات. بالإضافة إلى ما سبق، يُمكن لنماذج التعلم العميق التعرُّف على الأنماط المُعقّدة في الصور والنصوص والأصوات وغيرها من البيانات لإنتاج تنبؤات دقيقة.

في هذا المقال سنقدم لك نظرة شاملة على التعلم العميق وتطبيقاته العملية. ستتعرف على مفهوم التعلم العميق وأهميته في تحقيق تجاوب أكبر للأنظمة الذكية.

التعلم العميق هو أحد أنواع تقنية التعلم الآلي، الذي يشبه طريقة عمل الدماغ البشري. تحلل لوغاريتمات التعلم العميق البيانات باستخدام هيكل منطقي مماثل لذلك الذي يستخدمه البشر. ويستخدم التعلم العميق أنظمة ذكية تُسمى الشبكات العصبونية الاصطناعية لمعالجة المعلومات في طبقات.

مشاريع نقل التعلم التعرف على الصور: الكلاب مقابل القطط! باستخدام نقل التعلم

على سبيل المثال، في مثال صور الحيوانات، قد يصنف نموذج التعلم العميق "الطائرة" على أنها "سلحفاة" إذا تم بالخطأ إدخال صور لأشياء غير الحيوان في مجموعة البيانات.

يعتمد تصميم وبنية طبقة المُخرجات على المُهمّة المُحدّدة التي تهدف الشبكة إلى تنفيذها.  فيما يلي بعض السيناريوهات الشائعة لطبقة المُخرجات:

المعالجة اللغوية الطبيعية كتب المعالجة اللغوية الطبيعية كتاب التعمق في التعلم العميق: الجزء الثالث: قابلية التوسع اضغط هنا والكفاءة والتطبيقات

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comments on “Not known Factual Statements About تقنية التعلم العميق”

Leave a Reply

Gravatar